
COS 226: Introduction to Data Structures

Sudarshan S. Chawathe

University of Maine

Fall 2013

Data structures are schemes that organize data to permit efficient access in certain modes. The
desired modes of access (different kinds of look-ups and modifications), and their relative importance in an
application, typically guide the choice of existing data structures and the design of new ones. A judicious
choice of data structures often results in very significant improvements in the running time of a program. In
order to make such decisions, as well as to design new data structures, we need to understand existing data
structures, their access modes, and performance characteristics. In this course, we study data structures
from several perspectives, including design, analysis, and application.

News and Reminders:

• Please read the newsgroup for timely announcements.
• Class newsgroup: Local group umaine.cos226 on NNTP server news.cs.umaine.edu. Web interface

to get started: http://cs.umaine.edu/~chaw/news/.
• The most recent version of this document may be found at http://cs.umaine.edu/~chaw/cos226/.
• Some sections below point to material in separate documents that are found on the class Web site,

linked from the online version of this document.
• Please use the PDF version of this document for printing and reference: cos226.pdf

Goals

• Understand several interesting data structures and their properties.
• Learn how to use data structures and other tools to solve problems in various application areas.
• Gain experience in reading the relevant research literature and other publications used to disseminate

knowledge in the field.
• Practice the appropriate and ethical use of existing material of different kinds, such as source code,

services, and documentation.
• Gain experience in contributing to the body of knowledge.
• Learn how to analyze of the running times of programs using simple mathematical methods.
• Gain experience in conducting and documenting experimental studies of programs.
• Improve our programming skills, with attention to software engineering principles.
• Improve our communication skills, with particular emphasis on written communication and, further,

well-written programs.
• Learn how to manage a self-directed project.

Contact Information

Class meetings:

Time: Tuesdays & Thursdays, 2:00–3:15 p.m.
Location: Boardman Hall, Room 210.

1



Instructor: Sudarshan S. Chawathe

Office: Neville Hall, Room 224.
Office hours: (Please check for changes.)

Tuesdays and Thursdays: 8:00–9:00 a.m., 4:45–5:15 p.m.
Phone: +1-207-581-3930.

Please avoid calling except for truly urgent matters.
Email: chaw@cs.umaine.edu

Use email only for messages unsuitable for the newsgroup. (See below.) Please use only this email
address and put the string COS226 near the beginning of the Subject header of the message. All
other messages may be ignored.

Web: http://cs.umaine.edu/~chaw/.

Teaching Assistant: Mark A. Plummer

Office: Boardman Hall, Room 127.
Office hours: (Please check for changes.)

Tuesdays and Thursdays: 3:30–5:00 p.m.
Email: mark.a.plummer@maine.edu

Online Resources

Class Web site:
http://cs.umaine.edu/~chaw/cos226/

We will use the class Web site for posting assignments, readings, notes, and other material. Please
monitor it.

Class Newsgroup: We will use the local USENET newsgroup umaine.cos226 on the NNTP (net news)
server news.cs.umaine.edu for electronic discussions. The Web interface at http://cs.umaine.edu/

~chaw/news/ provides convenient access. Some further, more general, information on USENET appears
at http://en.wikipedia.org/wiki/Usenet. The newsgroup is the primary forum for electronic
announcements and discussions, so please monitor it regularly, and post messages there as well. Unless
there is a reason for not sharing a question or comment, please use the newsgroup, not email, for
questions and comments related to this course.

Class mailing list: Please make sure you are on the class mailing list. A sign-up sheet is circulated at the
first class meeting. If you miss it, please contact me to get on the list. We will use this mailing list
only for urgent messages because all other messages will go on the class newsgroup. I anticipate fewer
than a dozen messages on this list over the semester.

Grading Scheme

Grade components: Students are expected to complete and submit all assigned coursework in good faith;
those who fail to do so will earn a failing grade, regardless of overall numerical score.

class participation 5 %
classroom exercises and journal 10 %
homeworks (about 4) 20 %
two quizzes (short exams) 10 %
two midterm exams 20 %
final exam 20 %
term project 15 %

2



Class participation: Students are expected to contribute to learning by asking questions and making
relevant comments in class and on the class newsgroup. Quality is more important than quantity.
Disruptive activity contributes negatively. See policies below.

Classroom exercises and journal: Our work in the classroom will include a number of short group
exercises, meant to solidify understanding of the concepts being discussed. One or more such exercises
are likely to be part of most class meetings. Students must maintain a journal of their progress
through the course and submit the journal periodically (typically on the dates of quizzes and exams)
for grading. The journal consists of neatly organized classroom exercises, student observations on their
own learning, and other material as announced in class. The exercises and journal will be graded
primarily for effort, group work, and other contributions, and less so for simple correctness. Since
attendance is not mandatory (cf. policies), some low-scoring exercises will be dropped for each student.
Please ask for clarifications if there are concerns about the interaction of this component and the
attendance policy.

Homeworks: Homeworks include programming and non-programming ones, often mixed. No collaboration
is permitted. Everyone is encouraged to discuss the problems and solution strategies at a high level,
but the final solution and details must be individual work. If the boundary between permissible and
non-permissible interactions is unclear, please ask for clarifications.

Exams and Quizzes: All exams and quizzes are open book, open notes. You are free to bring with you
any resources that you find useful. However, no communications are permitted other than between
students and me. The use of computers during exams is strongly discouraged, but brief use may be
permitted provided it does not cause a disturbance, at the discretion of the proctor. You may use the
Internet, but only as a library to look up material you may find useful. Ask for clarifications in case of
any doubt. The exams are designed to require no equipment other than a pen and paper, along with
the textbook and assigned readings.

Midterm exams will be held during regular class meetings, and will be roughly an hour long. Each
quiz is a short exam, roughly half an hour long, held during part of a class meeting. The final exam
follows the usual university schedule, and is thus held outside of regular class meeting times, and often
in a different location.

Term Project: In addition to the programming and other homeworks, this course features a term project.
Group term projects are strongly encouraged, with groups of two to four students being typical, but
individual term projects are also permitted. The details of the project are fairly flexible, and all students
are encouraged to propose project that excites them. A few project ideas will also be provided in class
for use as term projects, perhaps with some of modifications. The main requirement for the project is
that it demonstrate the ability to work independently and apply the concepts studied in the course to
an application. Projects will be graded based on a project submission that includes a project report,
complete and well-documented source code and build instructions, and a script for a demonstration.
These materials will be due two weeks before finals week. Further details will be announced in class.

Policies

Due dates: All due dates and times, as announced in class, are strict, to the second. If you believe your
work was delayed by truly exceptional circumstances, let me know as soon as those circumstances are
known to you and I will try to make a fair allowance. However, the default is that you get a zero if you
don’t turn in the work on time, and fail the class if you don’t turn it in at all (cf. Grade Components
above).

Attendance: Although I expect students to attend all class meetings, I will not be taking attendance.
If you miss a class meeting, you are responsible for catching up on the lost material, including any
important announcements made in class, on your own. If you have a valid reason for missing a class,
let me know early and I will try to help you make up the class. There will be no make-up exams or

3



quizzes. A missed test earns zero credit. If you have a valid reason for missing a test, let me know as
early as that reason is known to you and I will make a fair allowance but there will be no make-up
tests in any case.

Classroom activities: This course is based on an active learning format, so effective classroom activities
are critical to its success. Students are expected to contribute to their own learning and that of their
classmates, and to devote 100% of their attention to these activities while in class. On a similar note,
all electronic and other distractions (computers, phones, assorted gizmos, etc.) must be completely
silenced and put away for the entire duration of the class. (Students who need any such devices
for disability accommodations should follow the guidelines outlined below. Others who need any
accommodation in this regard due to special circumstances should make advance arrangements with
the instructor.) No food or drink is allowed in class, other than water in a spill-proof container.
Students who violate these rules or otherwise cause distractions in class will be asked to leave with no
warning ; habitual violators will face disciplinary action.

Office hours: All students are encouraged to make use of both the instructor’s and TA’s office hours to
further their learning, obtain assistance on homework assignments, obtain feedback on their class per-
formance, etc. However, office hours are not to be used as a substitute for attending and participating
in class meetings (see above). Similarly, assistance with homework assignments will be limited to what
is appropriate based on fairness to all; students are expected to demonstrate substantial effort on the
assignment before seeking assistance.

Make-up classes: I may have to reschedule a few classes due to my other professional commitments. I
will make every attempt to minimize the number of such occurrences and to reschedule for a time that
works for most students. Further, I will make sure no student is penalized by such occurrences.

Academic honesty (standard university wording): Academic dishonesty includes cheating, plagiarism and
all forms of misrepresentation in academic work, and is unacceptable at The University of Maine. As
stated in the University of Maine’s online undergraduate Student Handbook, plagiarism (the submission
of another’s work without appropriate attribution) and cheating are violations of The University of
Maine Student Conduct Code. An instructor who has probable cause or reason to believe a student
has cheated may act upon such evidence, and should report the case to the supervising faculty member
or the Department Chair for appropriate action.

Disabilities (standard university wording): If you have a disability for which you may be requesting an
accommodation, please contact Ann Smith, Director of Disabilities Services, 121 East Annex, 581-2319,
as early as possible in the term.

Special circumstances (standard university wording): In the event of an extended disruption of normal
classroom activities, the format for this course may be modified to enable its completion within its
programmed time frame. In that event, you will be provided an addendum to the syllabus that will
supersede this version.

Programming

The focus of this course is on data structures, algorithms, algorithm analysis, and problem solving tech-
niques in Computer Science, and not on programming, much less programming in a particular language.
Programming is, however, a valuable part of the course as it helps us solidify the abstract concepts we study.
We will use Java as the primary programming language. Submissions will be in the form of packaged, well
documented, Java source files. Proper documentation and packaging of source code and other material is a
crucial component of assigned work and submissions failing in this regard will receive no credit.

Programming Environment and Tools: You are free to choose details such as operating system, development
environment, and editor based on your preferences. However, no matter what you use, the submission should

4



be a source-code package that works on a standard Java SE platform. In particular, submissions should work
on any operating system and hardware supported by Java SE. Further details on the packaging, submission,
and testing procedure will be provided in class and on the newsgroup.

Other Languages: If you prefer to use a language other than Java, please contact me. I am quite open to
the idea, and encourage interested students to explore it further. However, please check with me very early
in the semester so that we can determine the specifics to make sure your submissions can be tested and
graded fairly. You should avail of this option only if you are confident enough of your programming skills
to not require any programming help, and are prepared to take on additional work. This option is designed
for students who are proficient in Java and wish to use this opportunity to master another language, not
for students weak in Java who wish to avoid it. Anyone granted this option will still be responsible for all
Java-related material in the course.

Literate Programming: All submitted work must use a literate programming style: Your programs must be
designed with a human as the intended reader, although they must also compile and run correctly. Programs
that do not meet this requirement are likely to receive a zero score with no further consideration. Details
will be discussed in class. The use of any specific literate-programming or documentation tool is neither
necessary nor sufficient for this requirement.

Class Accounts: Although the use of official class accounts, on department computers, is not strictly required,
it is a good idea for everyone to have accounts on both our main Unix host (gandalf) and the cluster of PCs.
Among other uses, these accounts will permit testing that code submissions work correctly in a reference
environment. Class accounts will be generated based on the forms distributed at the first class meeting.
You should be able to access your gandalf account from anywhere on the Internet, including the labs in
Neville Hall and elsewhere on campus, by using ssh to connect to cs.umaine.edu. On most Unix hosts, the
command ssh -l username cs.umaine.edu should suffice. For Windows hosts, the freely available Putty
program works well: http://www.chiark.greenend.org.uk/~sgtatham/putty/. Do not use unencrypted
telnet sessions to connect to your account.

Schedule

At the beginning and end of each class, I typically announce the topics and textbook sections covered in
that class and those due at the next class. It is important that students read the material before the class in
which it is discussed and, in general, keep up with readings and studies. An approximate schedule appears
in Figure 1. Please use it only as a rough guide to plan your studies. Do not use it to schedule travel or
other events. If you need a definite answer on when something will or will not occur, you should check with
me.

Textbook and Readings

Textbook: Mark Allen Weiss. Data Structures and Problem Solving Using Java. Addison-Wesley, 4th edition,
2010. The university bookstore carries this book, which is a required textbook for this course. You may be
able to get by with the 3rd edition, at your risk, but do not use an even earlier version as the changes are
substantial.

The core topics for this course are found mainly in Chapters 18 and beyond ; a few earlier chapters, such as 5,
8, and 14 are also relevant. Detailed coverage information will be announced as we progress in the semester.
Most chapters in roughly the first third of the textbook, as well as some later chapters, discuss topics that
are covered in the prerequisite course, COS 225. We will not be covering these topics in this course but they
are important for successful completion of homeworks and tests, so it is advisable to brush up on them.

5



Tuesday Thursday

September 3rd C1

Introduction; trees §18.0–18.3.

5th C2

Traversals; binary search trees; order statistics;
§18.4–18.end.,19.0–19.2.

10th C3

Analysis of algorithms; maximum contiguous
subsequence; §5.0–5.3.

12th C4

Static searching; further analysis; §5.4–5.end.

17th C5

BST analysis, AVL trees; §19.3–19.4.

19th C6

? Quiz 1, regular class time & place.

24th C7

Red-black trees; §19.5.

26th C8

AA-trees; §19.6.

October 1st C9

B-trees; disk data structures; §19.7–19.end.

3rd C10

AA-trees; B-trees; §19.6,19.8.

8th C11

Catch-up; review.

10th C12

? Midterm Exam 1, regular class time & place.

15th

×No class. Fall break Oct. 14th–15th.

17th C13

B-trees; binary heaps; §19.8,21.1–21.3.

22nd C14

Splay trees; §22.1–22.2.

24th C15

Splay trees; §22.3–22.4.

29th C16

Skew heaps §23.1.

31st C17

? Quiz 2, regular class time & place.

November 5th C18

Pairing heap; §23.2.

7th C19

Hashing; §20.1–20.4.

12th C20

Hashing; §20.5–20.7.

14th C21

Catch-up; review.

19th C22

Graphs; shortest paths; §14.1–14.3.

21st C23

? Midterm Exam 2, regular class time & place.

26th C24

Graphs; shortest paths; §14.4–14.5.

28th

×No class. Thanksgiving break
Nov. 27st–Dec. 1st.

December 3rd C25

Sorting; §8.1–8.4.
Term project submissions due.

5th C26

Sorting; selection; §8.5–8.8.

10th C27

Catch-up; review. CS education week.
Journals due.

12th C28

CS education week.
? Term Projects Exhibition

17th

×No class. Finals week Dec.16th–20st.

19th

×No class. Finals week Dec.16th–20st.
? Check Univ. schedule for final exam.

Figure 1: Approximate schedule, likely to change.

6



Other Readings: All the following are recommended, but not all are required. Further details and additional
readings will be announced in class and may appear here as well.

1. Arne Andersson. Balanced search trees made simple. In Proceedings of the Workshop on Algorithms
and Data Structures, pages 60–71, Montreal, Canada, August 1993.

This paper introduces AA-trees and includes very nice examples and figures.

2. Sanjeev Saxena. Dominance made simple. Information Processing Letters, 109(9):419–421, April 2009.

This short paper is a good example of how some of the basic concepts studied in this course may be
used as building blocks to solve more complex problems.

3. Gilad Bracha. Generics in the Java programming language. Tutorial. http://java.sun.com/, July
2004.

The concepts explained here are essential for making good use of generics in Java and it is very painful
to learn them the hard way (e.g., while debugging your code).

4. Sudarshan S. Chawathe. Segment-based map matching. In Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), pages 1190–1197, Istanbul, Turkey, June 2007.

The main purpose of this paper, for this course, is providing a concrete example how data structures
and related concepts find use in current research and applications. Sections I, II, and III are required
reading. The rest of the paper is optional reading.

5. Derrick Coetzee. An efficient implementation of Blum, Floyd, Pratt, Rivest, and Tarjan’s worst-case
linear selection algorithm. http://moonflare.com/, January 2004.

6. Jon Bentley and Don Knuth. Programming pearls: Literate programming. Communications of the
ACM, 29(5):364–369, May 1986.

7. Paul E. Black. Dictionary of algorithms and data structures. http://www.nist.gov/dads/, September
1998.

8. Lloyd Allison. Suffix trees. http://www.allisons.org/ll/AlgDS/Tree/Suffix/, 2008.

9. Samuel W. Reynolds. A generalized polyphase merge algorithm. Communications of the ACM,
4(8):347–349, 1961.

This paper provides a succinct and readable description of polyphase merging. It is a very useful
supplement to the description in the textbook, which is missing many important details.

Exercises, Homeworks, Tests, and Notes

Material will appear here as we move along the semester. It may be useful to refer to the homeworks and
tests from the previous session: http://cs.umaine.edu/~chaw/201209/cos226/.

• Class exercises:

– Class Exercise 1: hwq/ce01.pdf.

– Class Exercise 2: hwq/ce02.pdf.

– Class Exercise 3: hwq/ce03.pdf.

– Class Exercise 4: hwq/ce04.pdf.

– Class Exercise 5: hwq/ce05.pdf.

– Class Exercise 6: hwq/ce06.pdf.

– Class Exercise 7: hwq/ce07.pdf.

7



– Class Exercise 8: hwq/ce08.pdf.

– Class Exercise 9: hwq/ce09.pdf.

– Class Exercise 10: hwq/ce10.pdf.

– Class Exercise 11: hwq/ce11.pdf.

– Class Exercise 12: hwq/ce12.pdf.

– Class Exercise 13: hwq/ce13.pdf.

– Class Exercise 14: hwq/ce14.pdf.

– Class Exercise 15: hwq/ce15.pdf.

– Class Exercise 16: hwq/ce16.pdf.

– Class Exercise 17: hwq/ce17.pdf.

– Class Exercise 18: hwq/ce18.pdf.

– Class Exercise 19: hwq/ce19.pdf.

– Class Exercise 20: hwq/ce20.pdf.

– Class Exercise 21: hwq/ce21.pdf.

– Class Exercise 22: hwq/ce22.pdf.

– Class Exercise 23: hwq/ce23.pdf.

• Homework assignments:

– Homework 1: hwq/hw01.pdf.

– Homework 2: hwq/hw02.pdf.

– Homework 3: hwq/hw03.pdf.

– Homework 4: hwq/hw04.pdf.

• Quizzes and Exams:

– Quiz 1: hwq/q01.pdf.

– Midterm Exam 1: hwq/mt01.pdf.

– Quiz 2: hwq/q02.pdf.

– Midterm Exam 2: hwq/mt02.pdf.

– Final Exam: hwq/fin.pdf.

• A few ideas for term projects:
notes/projideas.pdf

Homework and Project Submissions

Handwritten answers to non-programming problems should be submitted in class on the due date, at the
beginning of class, unless prior alternate arrangements are made. If you prefer to type your answers, please
make sure the result uses the proper symbolic notation for mathematical constructs. Illegible, hard to read,
or otherwise messy submissions, whether handwritten on typed, are likely to be returned without grading, for
zero credit. Answers to programming problems should be submitted electronically, using the packaging and
submission procedure that will be described in class and on the class newsgroup.

All electronic submissions must be made using the upload interface at http://cs.umaine.edu/~chaw/u/.
Electronic submissions in all other forms, such as email or physical media, will be discarded and receive
no credit.

If your upload is successful, you will be presented with a confirmation Web page similar to the following
sample. You should record the reported MD5 checksum and timestamp.

8



SUCCESS: Please note the following for your records.

Successfully saved cos226-hw01-aardvark-alice-4233.tgz.

MD5 checksum: 09ee098b83d94c7c046d6b55ebe84ae1

Timestamp: 2013-09-05 14:37:42

If you do not see something very similar then your submission is unsuccessful.

Sample Code

Sample code and other files may appear here.

Additional material, such as recently added files as announced in class or on the newsgroup, may be found
in the code subdirectory:

http://cs.umaine.edu/~chaw/cos226/code/

9


