```
COS 480/580 Fall 2011 Midterm Exam 1 60 + 20\star pts.; 60 min.; 7 Qs; 9 pgs. 2011-10-06 12:30 p.m.
(c)2011 Sudarshan S. Chawathe
```


Name:

\qquad

- COS 480 students should answer non- $\begin{gathered}\text { questions; optional } \star \text { questions are for extra credit. }\end{gathered}$ - COS 580 students should answer all questions, including \star questions.

1. (1 pt.) Write your name in the space provided above.
2. (9 pts.) List all keys of the relation $R(A, B, C, D, E, F)$ given the functional dependencies:

$$
\begin{align*}
A B & \rightarrow C \tag{1}\\
C & \rightarrow B \tag{2}\\
A D E & \rightarrow C \tag{3}\\
E F & \rightarrow A D \tag{4}\\
C E & \rightarrow F \tag{5}
\end{align*}
$$

Justify your answer by explaining why the listed attribute-sets are keys and why there are no other keys.
3. (20 pts.) Decompose the relation R of Question 2 as needed to yield a BCNF schema. Clearly show all intermediate steps, including details such as the dependency used to decompose a relation, the resulting relations, their projected dependencies, and their keys.
[additional space for answering the earlier question]
4. (10 pts.) Use the chase test to determine whether the decomposition of the relation R from the schema of Question 2 into $R_{1}(A, B, C), R_{2}(A, C, E), R_{3}(B, D, E)$, and $R_{4}(A, B, F)$ is lossless. Clearly indicate the operations on the tableau and the dependency used for each operation.
5. (10 pts.) Use the chase test to prove or disprove each of the following for a relation $S(A, B, C, D, E, F)$. Clearly indicate the operations on the tableau and the dependency used for each operation.
(a) If $A B \rightarrow C D$ then $A B \rightarrow E F$.
(b) If $A B \rightarrow C$ and $A C \rightarrow B$ then $B C \rightarrow A$.
[additional space for answering the earlier question]
6. (10 pts.) Provide algebra and Datalog equivalents of the following SQL query on a database with relations $T(A, B, C)$ and $U(B, D, E, F)$, or prove that no equivalents exist. (Assume that the types of all attributes used in comparison predicates are compatible.)

```
select T1.A, T2.A, U.E, U.F
from T T1, T T2, U
where T1.B = U.B and T2.B = some (
    select E from U where F < T1.B)
```

7. \star (20 pts.) Prove or disprove: There exists a relational algebra expression that uses no operators other than $\sigma, \pi, \times, \cup,-, \rho$ that is equivalent to the SQL query
```
select A, B
from R
where B = (select min(B) from R where C > 20)
```

To prove, you must provide an algebra expression and prove its equivalence to the SQL query. To disprove, you must clearly articulate why no such expression is possible.
[additional space for answering the earlier question]

