
COS 480/580 Fall 2011 HW01 100 + 50 ⋆ pts.; 7 pages. Due 2011-09-20 12:35 p.m.
c© 2011 Sudarshan S. Chawathe

Goal. This assignment asks you to build a small database application for managing in-
formation related to rooms and reservations. The main goal of this assignment is to gain
experience using one or more application programming interfaces (APIs) to PostgreSQL. Sec-
ondary goals include practice in writing SQL queries and a study of the impact of database
design on ease of querying and updating data, and on maintaining database consistency.
This homework should provide a concrete motivation for these topics.

The Programming Environment. An important part of this assignment is learning
the interface between a typical programming environment and the database system. For
programming your application, you should use standard C (with embedded or dynamic SQL)
or Java (with JDBC). If you wish to use a different programming language or environment,
you should check with me no later than the class immediately following the one in which
this assignment is given. Figuring out the details of the database system interface and the
necessary libraries usually takes people a lot longer than they expect, so please start working
on at least this part early.

The Application Program. As described further in the packaging instructions below,
your submission should produce an executable file called roomboss, that uses PostgreSQL to
implement the application described below. You must implement your application program
as a Unix command-line program that reads from standard input and writes to standard
output. Your program will be tested and graded on Gandalf. If you use some other machine
for development, please check very carefully that your code runs on Gandalf. Code that does
not properly compile and run on gandalf will get little or no credit even if the problems are
due to some peculiarity of Gandalf. This application must implement the user functions
described below. When the work (both internal processing and output to user) for each
function is done, your application should write (to standard output) five dashes (-----)
followed by a single newline character. We will refer to this string of five dashes followed
by a newline as the function termination string. The following description also refers to
a separator string, which consists of the three-character sequence space-colon-space (: ,
using to represent a space). We will assume that the separator string is not a substring
of any valid string input to this application. Except the output described in this homework,
your program should not produce any extra output, such as prompts or diagnostic messages.

The interface is used to invoke a set of functions, described below, from standard input by
listing the function name followed by its arguments, one per line. For example, the connect

function described below takes two arguments and may be invoked as follows (using example
values for the arguments):

connect

bigmoose

xyzzy

1

String arguments will be listed verbatim, with no quotes or other demarcation. You may
assume that function arguments do not contain any newline characters. Integers will be listed
in conventional format (e.g., 123, 74). You may assume that all numbers are in the range
[0, 105]. Date-time values are in UTC, with the format YYYY-MM-DD HH:MM:SS, along the lines
of the ISO 8601 standard.1 For example, 2011-09-23 09:04:02 denotes two seconds past
9:04 a.m. UTC on the 23rd of September, 2011 (the Autumnal Equinox). Unless otherwise
specified, you may assume that all string-valued attributes contain at most 100 characters.
An exception is the comments attribute of Facilities, which may contain up to 100,000
characters.

The input will contain, in general, several function calls in the above format, listed one
after the other. Your program should ignore lines with # (pound sign) as the first character.
It should also ignore blank lines, but blank lines separating function invocations are not

required. Since you know the number of arguments each function takes, there is no need for
such separation. The function termination string is used only for output, not in the input.
Your application should read and process the functions in the order in which they appear in
the input and should terminate gracefully (e.g., by closing open database connections) when
the end of input is reached. There is no special end-of-input marker. You do not need to
provide any error-handling features; your program will only be tested on valid input.

Database Tables. The application uses the database tables of Figure 1, where you should
make suitable choices for the missing information, marked with ? signs, based on the rest of
the application description. The intended semantics of the tables should be clear from the
column names and the descriptions that follow; if not, ask for clarifications.

Functions. The functions that your program should implement are described below. The
descriptions use a conventional functional notation of the form f(a, b), but the input is
presented in the form described above.

connect(u, p). A session begins when your application program is invoked and ends when
the end of input is reached on the standard input. This function will be the first one invoked
in any session, and it will be invoked exactly once per session. In response, your application
should perform all necessary initialization and connect to the database server as user u with
password p. Strictly speaking, your program need not perform any of these actions, since its
observable behavior for this function does not depend on them.

We will test your program using a temporary account u that is not your class account.
You may assume that the database for account u initially contains no user tables. Make sure
you do not assume anything specific to your own class account. For example, you cannot
rely on any initialization you have in your .login or .bashrc files, since these files will
not be the same for the test account. Please be sure to understand the implications of this

requirement. Creating code that can be easily run by someone else is an important part of
this homework. For testing, you should use your own account name and password in place

1Markus Kuhn, A Summary of the International Standard Date and Time Notation, http://www.cl.

cam.ac.uk/~mgk25/iso-time.html, 2001.

2

Rooms

id building floor room directions

? varchar(20) integer integer varchar(100)

? Neville 1 110 Near the north entrance...

? Neville 2 210 Take the stairs...

? Neville 2 227 Large room near...

? Corbett 1 101 Right there...

? Corbett 2 201 Left, then right...

Facilities

id building room chairs screens comments

? varchar(20) integer integer integer ?

? Neville 210 25 0 Now also 208. Weird setup.

? Neville 227 35 1 The old workhorse; quite nice.

? Corbett 101 2 0 Let me tell you something...

Reservations

cnum rstart rend building room name

? ? ? ? ? ?

? ? ? ? ? ?

Figure 1: A database of rooms.

of u and p. You may wish to test your submission by temporarily replacing your customized
account files, if any, with the default ones that came with your account.

createTables(). This function should result in the creation of the database tables de-
scribed on page 2, if they do not already exist in the database. This function will be called
before any of the functions below. It does not return any results.

destroyTables(). This function should cause the removal of the database tables created
by createTables, if they are present in the database. After destroyTables, the database
should be in its initial pristine state (with no user tables). You may assume that after this
function is called, a call to createTable will precede a call to any of the functions described
below. This function does not return any results.

addRoom(b, f , r, d). When this function is invoked, your application should add a row
(i, b, f, r, d) to the Rooms table, where b, f , r, and d denote, respectively, the building, floor,
room number, and directions, and where i is an identifier of your program’s choosing. (See
the note on identifiers below.) The output of this function is the identifier i.

findRoom(s). This function should search for rooms for which s occurs as a substring
of either building name or directions (or both). This search, and all searches on string-
valued attributes, should be case-insensitive unless specified otherwise. The matching
room records should be printed one per line. Each line should contain the room’s identifier
(see above), building name, and room number, separated using the separator string described

3

earlier (page 1). The output should be sorted in ascending lexicographic order of building
name (case insensitive) and ascending order of room numbers (secondary sort order). Output
lines here and elsewhere should be terminated by a single newline character.

describeRoom(i). This function should print descriptive information about the room
identified by the given identifier i (exact, case-sensitive string match). If there is no room
with identifier i, no output should be produced and this condition is not an error. If the
room identified by i exists, the following information should be printed on a single line (in
this order): building name, room number, floor, number of chairs, and number of screens.

For this and other functions, attribute values and other items printed on an output line
should be separated using the separator string described earlier (page 1). Strings should be
printed literally (with no quotes, padding, or other artifacts). Integers and dates should be
printed in the format used for the input.

addFacilities(b, r, c, s). When this function is invoked, your application should add a row
(f, b, r, c, s) to the Facilities table, where b, r, c, and s denote, respectively, the building
name, room number, number of chairs, and number of screens, and where f is an identifier
similar to that used in addRoom. The output of this function is the identifier f .

addReservation(s, e, b, r, n). When this function is invoked, your application should add
a row (c, s, e, b, r, n) to the Reservations table, where s, e, b, r, and n denote, respectively,
the start and end times of the reservation, the building name, the room number, and the
name of the person making the reservation. The identifier c is a reservation confirmation
number (identifier) that is also the output of this function.

Note on Identifiers. The identifiers generated by your program in response to the addRoom,
addFacilities, and addReservation functions must uniquely identify the rows in the re-
spective tables. Your application is responsible for generating and managing these identifiers.
Once your application has exposed a room’s identifier, say, by printing it as output, the iden-
tifier may be presented as an argument of the describeRoom function at any point in the
future. These identifiers must persist between sessions. For example, if your program exposes
a room identifier xyzzy182 during one session a describeRoom function call with xyzzy182
as the argument must produce details of the corresponding record. Unless this record has
been deleted or otherwise modified in the interim, the output of this descrbeRoom func-
tion invocation should be the same as if it had been invoked in the original session. All
matching for identifiers should be exact. If you use strings as identifiers, the match should
be case-sensitive, exact string match, for example. There is a similar constraint on reserva-
tion identifiers: Once exposed, they must permit lookup using the describeReservation

function below.

describeReservation(c). This function should print descriptive information about the
room reservation identified by the given identifier (confirmation number) c (exact, case-

sensitive string match). If there is no reservation matching identifier c, no output should
be produced and this condition is not an error. If the reservation by c exists, the following

4

information should be printed on a single line (in this order): building name, room number,
start time, end time, and name of reservation holder.

makeReservations(p, l, b, r, n). This function is similar to addReservation, differing
only in how the begin and end times of the reservation are specified. Instead of these times
being specified explicitly, they are specified using a time-pattern p and time-length l as
described below. The other arguments (b, r, and n) are treated as in addReservation.
Recall that all times are in UTC.

The begin times are based on interpreting the time-pattern p as a crontab2 expression.
The expression p consists of five fields (minute, hour, day of month, month, and day of week)
separated by whitespace. The following excerpt (slightly modified) from the crontab manual
describes the semantics.

[A timestamp matches p] when the minute, hour, and month of year fields match
the current time, and when at least one of the two day fields (day of month, or
day of week) match the current time. The time and date fields are:

field allowed values
minute 0–59
hour 0–23

day of month 1–31
month 1–12 or names

day of week 0–7 (0 and 7 mean Sun.)
[year] [integer year of common era]

A field may be an asterisk (*), which always stands for “first–last.”

Ranges of numbers are allowed. Ranges are two numbers separated with a hy-
phen. The specified range is inclusive. For example, 8-11 for an “hours” entry
specifies [a reservation] at hours 8, 9, 10 and 11. [Similarly, 2009-2011 specifies
a reservation for years 2009, 2010, and 2011 C.E. We will assume a temporal
granularity of one minute. Thus the time-pattern * * 1 1 * 2009 specifies the
time points marking each minute of each hour of January 1st, 2009 (a total of
60× 60 points in time.]

Lists are allowed. A list is a set of numbers (or ranges) separated by commas.
Examples: “1,2,5,9”; “0-4,8-12.”

Step values can be used in conjunction with ranges. Following a range with
“/<number>” specifies skips of the number’s value through the range. For exam-
ple, “0-23/2” can be used in the hours field to specify command execution every
other hour (the alternative in the V7 standard is “0,2,4,6,8,10,12,14,16,18,
20,22”). Steps are also permitted after an asterisk, so if you want to say “every
two hours,” just use “*/2.”

Names can also be used for the “month” and “day of week” fields. Use the first
three letters of the particular day or month (case doesn’t matter). Ranges or
lists of names are not allowed.

2Paul Vixie, crontab—tables for driving cron, Manual, 4th Berkeley Distribution, 1994.

5

A single invocation of makeReservations creates, in general, several entries in the Reservations
table. We will refer to this group of reservation entries created by a makeReservations in-
vocation as a reservation group. The time-length argument specifies the duration of each
reservation in the reservation group, in minutes. For example, the following invocation re-
sults in 24 reservations for January 15th, 2011 for the first 10 minutes of each hour of that
day:

makeReservation(0 * 15 1 * 2011, 10, Neville, 210, Alice)

Time-Limit Assumption. You may ignore reservations beyond 2012-12-31 23:59:59. For
patterns that specify reservations both before and after this timestamp, only the reservations
after the date may be ignored; the earlier ones must be managed properly. This assumption
may simplify your implementation of invocations such as the following:

makeReservation(0 * 15 1 * *, 10, Neville, 210, Alice)

matchReservation(p, b, r). This function finds reservations for room number r in build-
ing b such that there is at least one instant of time that matches the time-pattern p and
that lies between the begin and end times of the reservation (including the end-points). The
interpretation of p is identical to that used by makeReservations. The output consists of
the confirmation numbers of the matching reservations, one per line.

getFreeRoom(p, l, c, s). This function finds rooms that are unreserved at all times
matching the time-pattern p and l, which are interpreted as in makeReservations. In
addition, the matching rooms are required to have at least c chairs and s screens. The
output consists of the building and room-number for each matching room, one per line. A
room is considered unreserved at a time matching p only if it is unreserved for the entire
length of each interval specified by p and l. If the facilities (number of chairs and screens)
of a room are not known, the room does not match.

Packaging and Submission. You should submit your work via the interface at http://
cs.umaine.edu/~chaw/u/ as a single file named using the scheme cos480-hw01-L -F -N.tgz,
replacing L and F with your last-name and first-name, and N by an arbitrary 4-digit integer.

Unpacking your submission should create a directory M -hw02 (as a subdirectory of the
working directory), where M is your last name. Typing make at the Unix shell prompt
in this directory should result in the complete compilation of your program, producing an
executable file called roomboss. You will need to include an appropriate Makefile for this
procedure to work. You should also include a short README file describing the files in your
submission, along with anything that may be helpful in fixing your submission if it does
not work as above. You must make sure you program does not make any assumptions on
the nature of stdin and stdout and, in particular, that it works when stdin and stdout are
redirected. For example, we may run your program as follows, where datafile is a text file
contains the input of the program: roomboss < datafile, but we may also invoke roomboss
using an interactive terminal. If you program using the proper conventions, roomboss should
just work in all such cases without any special effort on your part, but if you bypass those

6

conventions, it may not. Please check carefully that your file satisfies these requirements.
Proper packaging and submission is an important part of this assignment and your score will
suffer greatly if your submission falls short in this area.

⋆ Advanced Work. [This portion of the assignment is required for COS 580 and optional
(extra credit) for COS 480.] For each of the following, you must (1) include a clear and
precise description of your solution in your README file (or an accompanying PDF file),
(2) implement that solution, and (3) include suitable test data and instructions.

1. Do away with the time-limit assumption on page 6. In your README file, clearly
describe your scheme for managing reservations that extend indefinitely into the future.

2. Add a feature to allow the selective modification and cancellation of reservations, in-
cluding canceling some, but not all, of those created by a single makeReservations

invocation.

Quantify the space and time costs of the methods you describe above by

1. providing suitable expressions for the running times of the operations, the database
space requirements, and the computation (working) space requirements in terms of
suitable input parameters, and

2. conducting a brief but precise and well documented experimental evaluation.

7

