
COS 480/580: Database Management Systems

Sudarshan S. Chawathe
University of Maine

Fall 2007

This course covers database systems from the
perspective of database designers and database pro-
grammers (not to be confused with database system
implementors). The emphasis is on fundamental top-
ics that should be familiar to every computer scientist
and good programmer. In addition to traditional
topics such as Entity-Relationship modeling, rela-
tional database design theory, relational algebra and
calculus, SQL, and Datalog, the course also covers
object-oriented and object-relational databases, with
topics such as ODL, OQL, and SQL3.

News and Reminders:

• Please read the newsgroup for timely an-

nouncements.

• Class newsgroup: Local group umaine.cos480

on NNTP server news.cs.umaine.edu. Web
interface to get started: http://cs.umaine.

edu/~chaw/news/.
• You may use last year’s Web site to get a rough

idea of the homeworks and exams: http://cs.

umaine.edu/~chaw/200609/cos480/.
• You may access a local copy of the PostgreSQL

documentation (with a slightly improved format-
ting) at pgsql/doc/html/. In particular, the
section describing psql is at pgsql/doc/html/

app-psql.html.
• Please use the PDF version of this document for

printing and reference: cos480.pdf

Contact Information

Class meetings:

Time: Tuesdays & Thursdays, 12:30–1:45 p.m.
Location: Neville Hall, Room 210.

Instructor: Sudarshan S. Chawathe

Office: Neville Hall, Room 224.

Office hours: (Please check for changes.)
Tuesdays & Thursdays: 10:30–11:00 a.m.,
1:45–2:00 p.m., 3:15–4:00 p.m.

Phone: +1-207-581-3930.
Email: chaw@cs.umaine.edu

Use email only for messages unsuitable for
the newsgroup. (See below.) Please put
the string COS480 near the beginning of
the Subject header of your messages to me.

Web: http://cs.umaine.edu/~chaw/.

Teaching Assistant: Mark Royer

Office: East Annex, Room 229.
Office hours: (Please check for changes.)

Mondays & Wednesdays: 1:00–4:00 p.m.
Phone: +1-207-581-2005.
Email: mroyer@cs.umaine.edu

Online Resources

Class Web site:

http://cs.umaine.edu/~chaw/cos480/

We will use the class Web site for posting
announcements, homework assignments, hints,
solutions, etc. Please monitor it.

Class Newsgroup: We will use the local USENET
newsgroup umaine.cos480 on the NNTP server
news.cs.umaine.edu for electronic discussions.
If you are unfamiliar with USENET, you may
find the Web interface at http://cs.umaine.

edu/~chaw/news/ useful as a quick way to get
started. You may find further information on
USENET at http://en.wikipedia.org/wiki/

Usenet.

Class mailing list: Please make sure you are

on the class mailing list. A sign-up sheet will
be circulated at the first class meeting. If you

1

missed it, you need to contact me to get on the
list. We will use this mailing list only for urgent
messages because all other messages will go on
the class newsgroup. (I anticipate fewer than a
dozen messages on this list over the semester.)

Grading Scheme

Grades: Grades will be based on class participation
(5%) homeworks (15%), two mid-term exams
(15% each), a final exam (20%), and a project
(30%).

Class participation: Students are expected to con-
tribute to learning by asking questions and
making relevant comments in class. Quality
is more important than quantity. Disruptive
activity contributes negatively. Please make sure
all disruptive devices are disabled while in class.

Homeworks: Homeworks include programming and
non-programming ones. No collaboration is per-
mitted. You are allowed to discuss the problems
at a high level, but the final solution must be
your individual work.

Exams: All exams are open book, open notes. You
are free to bring with you any resources that
you find useful. However, no communications
are permitted other than between students and
me.

Project: In addition to the programming and other
homeworks, the course features a semester-long
group project. Students will work in groups
of three or four to design and implement a
substantial database application. Projects will
be graded based on a written project report, the
submitted source code, a demonstration, and a
question-and-answer session following the demo.

COS 580: There will be additional readings as-
signed to COS 580 students. The readings will
be a mix of some classic papers of the database
field and more recent publications. COS 580
students are expected to be comfortable reading
such papers. There will also be additional
and/or different questions on the exams and
homeworks. Similarly, COS 580 students will be
held to a higher standard during the question-
and-answer session following the project demo.

Policies

Special needs: If you have special needs of any
kind (including, but not limited to disabilities,
absences due to participation in sports or other
activities, etc.) please contact me as soon as
the need is known to you and I will try to
accommodate them as much as possible.

Attendance: Although I expect students to attend
all class meetings, I will not be taking atten-
dance. If you miss a class meeting, you are
responsible for making up the lost material. If
you have a valid reason for missing a class, let
me know early and I will try to help you make
up the class. (See above.)

Make-up classes: I may have to reschedule a few
classes due to my other professional commit-
ments. I will make every attempt to minimize
the number of such occurrences and to resched-
ule for a time that works for most students.
Further, I will make sure no student is penalized
by such occurrences.

Due dates: All due dates are strict, as announced
in class. If you believe your work was delayed
by truly exceptional circumstances, let me know
as soon as those circumstances are known to you
and I will try to make a fair allowance. However,
the default is that you get a zero if you don’t turn
in the work on time.

Academic honesty: I expect you to hold your-
selves to the highest standards of academic
honesty. Please take this point very seriously.
If you are not sure if something is permitted,
check with me. All help you receive, even if
permitted, must be prominently noted in all
work you submit. Plagiarism and other forms
of cheating will result in very stiff penalties
(including, but not limited to, an F grade in the
course and further disciplinary action from the
university).

Programming

Programming: We will use PostgreSQL as the
database system for programming assignments.
You are free to program in any programming
language you choose. However, if you are likely
to need assistance, you should check with me
before making your decision.

2

Class accounts: Class accounts for Unix and Post-
greSQL will be generated based on the forms
distributed at the first class meeting. If you
missed them, please get in touch with me. You
should be able to access your accounts from
anywhere on the Internet (including the labs in
Neville Hall and elsewhere on campus) by using
ssh to connect to cs.umaine.edu. On most
Unix hosts, the command ssh -l username

cs.umaine.edu should suffice. For Windows
hosts, the freely available Putty program works
well: http://www.chiark.greenend.org.uk/

~sgtatham/putty/. Do not use unencrypted
telnet sessions to connect to your account!

Schedule

At the beginning and end of each class, I will
announce sections of the textbook covered in each
class and those due at the next class. An approximate
schedule appears in Figure 1. Please use it only as
a rough guide to plan your studies. Do not use it to
schedule travel or other events. If you need a definite
answer on when something will or will not occur, you
should check with me.

Textbook and Readings

Textbook: A first course in database systems. Jef-
frey D. Ullman and Jennifer Widom. Prentice-Hall,
Upper Saddle River, New Jersey, second edition,
2001.

The textbook’s Web site has many useful re-
sources: http://www-db.stanford.edu/~ullman/

fcdb.html. In particular, for a more detailed listing
of course topics, please refer to the textbook’s table of
contents: http://www-db.stanford.edu/~ullman/

pub/fcdb-toc.txt

Readings: Items marked with ⋆ are required for
COS 580 students. COS 480 students may wish to
read them if they plan to attempt the extra-credit
questions on tests. Readings marked with ⋆⋆ are
extra credit for COS 580 students and double-extra
credit for COS 480 students. Students who wish to
receive credit for ⋆⋆ items must discuss the specifics
with me first. Everyone is encouraged to at least
browse all the readings.

Date Material
1 09-04 3.0, 3.1, 5.0, 5.1, 5.2.
2 -06 6.1, 6.2.
3 -11 HW1 assigned; 6.3, 6.4.
4 -13 6.5, 6.6.
5 -18 6.7, 5.3, 5.4.
6 -20 1.*.
7 -25 PR1 & HW1 due; catch-up; review.
8 -27 Midterm Exam 1; HW2 assigned.
9 10-02 8.1, 8.3, 8.4, 8.5

10 -04 8.6, 8.7
-09 No class (Fall break Oct. 6th–9th).

11 -11 2.1, 2.2; Readings 1 & 2.
12 -16 2.3, 2.4.
13 -18 HW2 due; HW3 assigned; 3.2, 3.3.
14 -23 3.4, 3.5.
15 -25 3.6, 3.7.
16 -30 HW3 due; catch-up; review.
17 11-01 Midterm Exam 2.
18 -06 7.1, 7.2.
19 -08 HW03 due; 7.3, 7.4.
20 -13 4.1, 4.2, 4.3.
21 -15 PR02 due; 4.4, 4.5, 4.6, 4.7.
22 -20 9.1, 9.2, 9.3.

-22 No class (Thanksgiving break
Nov. 23rd–26th).

23 -27 9.4, 9.5.
24 -29 10.1, 10.2; Reading 3.
25 12-04 10.3, 10.4.
26 -06 8.2, extra
27 -11 demos; catch-up; review
28 -13 demos; catch-up; review
29 -18 Final exam, 9:30 a.m.–11:30

a.m.; location TBA.

Figure 1: Approximate Schedule. The numbers

refer to sections in the textbook. PR denotes project

report and HW denotes homework. Tuesday dates

are in italics.

3

1. Edgar F. Codd. A relational model of data for
large shared data banks. Communications of the
ACM, 13(6):377–387, June 1970.

2. Notes on Codd’s paper: notes/rmodel.pdf;
notes/rmodel/rmodel.html.

3. [A recent paper for 480 and 580 will be added
here.]

4. ⋆ Goetz Graefe. Query evaluation techniques
for large databases. ACM Computing Surveys,
25(2):73–170, June 1993.

5. Notes on Graefe’s paper: notes/qeval.pdf;
notes/qeval/qeval.html.

6. [A recent paper for 580 will be added here.]

7. ⋆⋆ François Bancilhon and Raghu Ramakrish-
nan. An amateur’s introduction to recursive
query processing strategies. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 16–52,
Washington, D.C., May 1986.

Further Reading: These books are not required
reading and nothing in the course will depend directly
on reading them. However, they are good sources for
different explanations of some concepts, additional in-
formation on various topics, examples, and exercises.

1. Serge Abiteboul, Richard Hull, and Victor
Vianu. Foundations of Databases. Addison-
Wesley, 1995.
This book is a textbook for COS 598, Advanced
Topics in Databases, and focuses on Database
Theory. The book is not light reading but it is
much easier than reading the equivalent set of
papers.

2. Hector Garcia-Molina, Jeffrey D. Ullman, and
Jennifer Widom. Database Systems: The Com-
plete Book. Prentice-Hall, 2002.
The first half of this book is essentially identical
to the main textbook. The second half covers
topics in database system implementation, and
is a good resource for learning more about how
database systems are implemented. Since the
terminology and style is consistent with the main
textbook, it should be easy reading.

3. Christopher J. Date. An Introduction to
Database Systems. Addison-Wesley, Reading,
Massachusetts, 2000.
A classic database-systems textbook.

4. Raghu Ramakrishnan and Johannes Gehrke.
Database Management Systems. McGraw-Hill,
third edition, 2002.
Another standard textbook with detailed cover-
age of some topics that we will cover briefly.

5. Roderic Geoffrey Galton Cattell. Object Data
Management: Object-Oriented and Extended Re-
lational Database Systems. Addison-Wesley,
Reading, Massachusetts, 1994.
A good introduction to object and object-
relational databases.

6. François Bancilhon, Claude Delobel, and Paris
Kanellakis. Building an Object-Oriented
Database System: The Story of O2. Morgan
Kaufmann, 1992.
Another good book on object databases.

7. Michael Stonebraker and Joseph M. Hellerstein,
editors. Readings in Database Systems. Morgan
Kaufmaann, San Francisco, California, third edi-
tion, 1998.
This collection of papers, including some classics,
provides a sampling of topics in database system
implementation.

Homeworks and Tests

Homework assignments, exams, and solutions will
appear here as we move along the semester. It
may be useful to refer to the homeworks and tests
from the previous session: http://cs.umaine.edu/

~chaw/200609/cos480/.

• Homework 1: hwq/hw01.pdf. sample solutions:
p/hw01s.pdf.

• Midterm 1: hwq/mt01.pdf; sample solutions: p/
mt01s.pdf.

• Homework 2: hwq/hw02.pdf.

• Midterm 2: hwq/mt02.pdf; sample solutions: p/
mt02s.pdf.

• Homework 3: hwq/hw03.pdf.

Project Reports

The requirements for both intermediate and final
group-project reports are described below. The
intermediate reports do not affect your grade directly

4

(they have 0 weight) and are thus optional. However,
their submission is strongly encouraged to enable
early feedback on projects.

Instructions for all reports: The quality of
your report is an important component of your final
grade (roughly a third of your project score, or
10% overall), so please make sure you pay attention
to organization, grammar, punctuation, typography,
layout, and overall clarity. Word and page limits
are strict. Figures contribute to the word-count
an amount equal to the number of words in the
figure. The first page of each report should include
appropriate title and identifying information (group
name and group members). Do not use a separate
title page or cover page. Do not include sensitive
information (SSNs, passwords, etc.) anywhere in
your report. In each report submission, include all
previous report submissions in an appendix. You
should also include a section in each report detailing
how you have addressed (or plan to address) any
comments I may have made on your earlier reports.
You are also free to include additional appendices
containing information you believe to be useful to the
reader. However, like all appendices, the material in
such appendices should not be required to understand
the report. That is, you should not assume that
the appendices will be read. The appendices do not
contribute to the page or word limit.

Submission: You should submit your project
reports electronically in PDF format. Your file
should be named using the scheme gname -X -N.pdf

where gname is the name of your project group (e.g.,
widgetmasters), X is one of pr1, pr2, and pr3 for
the first, second, and third project reports, respec-
tively, and N is an arbitrary 4-digit number. For
example, the widgetmasters group may submit a file
widgetmasters-PR2-4242.pdf. Please use only low-
ercase letters in gname and use gname consistently
for all submissions. For the source-code submission,
use the file-naming scheme gname -src.tgz for the
tarred, gzipped package containing your source code.
You should upload this file by anonymous FTP
(anonymous as the user name and your email address
as the password) to the FTP server cs.umaine.edu

in directory the /incoming/cs/cos480/. If you need
to upload an updated version of your submission
for any reason, you can follow this procedure again
using a different four-digit integer in the file name.
If you try using the same file name as your earlier
submission, the upload will likely fail. I will grade
the most recent submission before each deadline. You

will not be able to list the FTP upload directory
(standard security setup), so pay attention to the
diagnostic messages from your FTP program.
Project Report 1: The most important parts of
this report are the choice of group members and the
choice of a suitable application. The maximum length
is two pages. This report is optional. Points to cover:

• Group name: short and sweet.

• Group members: For each member, include full
name (as registered), preferred name, major, and
year.

• A brief description of your proposed application
from the end-user point-of-view. (How would
you describe your proposed work to a potential
customer who is not familiar with databases and
programming?)

• A brief description of your implementation plans.
You may wish to include a rough system archi-
tecture. Mention the programming languages,
database systems (e.g., Oracle, PostgreSQL),
and major libraries or components (e.g., Apache,
PHP, Jserv) that you plan to use. (How would
you describe your work to a classmate or other
database-savvy person?)

• Progress report: Outline what you have done so
far and what you plan to do next. Try to set up
some milestones for yourself.

Project Report 2: The maximum length is 10
pages. This report is optional. Points to cover:

• Any revisions to your project description or
implementation plans.

• Conceptual (ER) model for your database ap-
plication. Please make sure that you follow
the standard conventions as described in the
textbook and in class. Any additional features
that you need should be included as annotations.
Try to include as many constraints as you can
(as annotations). Include explanations for any
constraints that are not obvious. (For example,
if some constraint is the result of your design de-
cision to allow at most one shopping cart per reg-
istered user at any time, make sure you explain
this reason.) Remember that the ER diagram is
a design tool and your work will be evaluated for
good design. Simply submitting a syntactically
correct diagram will not get you very far if the

5

design is poor (or poorly explained). Feel free
to include English explanations as needed in the
main body of your report.

• The translation of your conceptual model to a
logical (relational) model. You must include
details of all steps of this process, including the
mapping of ER concepts to relation, the enumer-
ation of functional dependencies, normalization,
and any additional transformations.

• A summary of the final logical model derived
above.

• Partial physical model: Include create table
statements that illustrate the attribute types.
Explain non-obvious design choices (e.g., if you
use an integer type instead of a date type for
date-of-sale).

• Progress report, as in the earlier report.

• Appendix with earlier reports, if any.

Project Report 3: The final report consists of
the following parts. Please note that, except for the
first two parts, there is no limit (neither lower nor
upper) on length. You should not feel the pressure
to write a certain number of pages. For example, you
don’t need to write 10 pages of user documentation
to get a good score. If you can say all that needs to
be said in five pages, it’s fine.

• Summary of work: This part should be no
longer than 10 pages. It should include a clear
description of your application and a high-level
description of the functionality you implement.
This part is your chance to make sure you get
credit for the parts of your project work that may
not be obvious. Be sure to highlight the novel,
interesting, difficult, or otherwise noteworthy
parts of your project.

• All the material required for the earlier project
reports, subject to the corresponding length
restrictions. This part is in addition to the
verbatim inclusion of earlier reports in the ap-
pendix, as noted below. The description here
may differ (and typically will differ) from what
you submitted in earlier reports. For example,
if there were problems with your ER diagram
and normalization, you should include the fixed
versions here.

• User documentation: This part is what you
would include with your application if you were
shipping it as a product. Note that by user, we
mean the person setting up your application, not
the end user. (For example, if you built an online
bookstore application, the user here denotes
the person working for the bookstore, charged
with setting up the Web site, not the person
buying books.) It should include a description
of how your application works (major modules,
processes, flow of control and data, etc.). There
is no fixed page limit for this part; 10 pages is
typical.

• Developer documentation: This part should con-
tain a detailed description of your implementa-
tion that would be useful to someone interested
in extending or modifying it (but that is not
needed by someone interested in only using it
as-is). For example, you should mention here
how additional functionality could be added,
or how something could be implemented in a
more efficient or easier manner. Do not shy
away from pointing out problems in the current
implementation. You will not lose points for it.
In fact, if you clearly describe why something
you implemented is not great, and how it can
be improved, you’ll get more credit. There is no
fixed page limit for this part; 10 pages is typical.

• Appendix with earlier reports, if any.

Source Code: As part of your final submission,
you should upload all source code packaged as a
tarred, gzipped file. (See submission instructions
above.) This package should include a README
file that describes the files in your submission and
indicates how to compile them and set up your
application. (As a simple test, a classmate who reads
your project report and the README file should be
able to set up your application.) You should include
all code (and HTML pages and scripts) written
by your group. Do not include compiled code and
libraries. Instead, indicate how to obtain and set up
the libraries. (For example, you can say ”We use
the Apache server version x.y.z, which is available at
http://www.apache.org/”; do not include the Apache
distribution!) You should include a small sample
dataset (no larger than 10 MB) so that someone
setting up your application can test it easily. You
should also include any icons needed to get your
application running (e.g., logo for a online store,
image of a ”for sale” button). Although, unlike

6

the programming homeworks, we do not require
that your submission compile with a single make
command, you are required to provide enough detail
to enable someone else to set up your application,
so please check to make sure you’ve included all the
necessary files and instructions.

7

