A Second Look at Relational Algebra
Class Notes for COS 480/580 and MAT 500

Sudarshan S. Chawathe

University of Maine

October 13, 2006

Logical and Physical Operators Recall the op-
erators, such as projection and join, described in the
quick introduction to relational algebra.! The defi-
nitions of those operators specify only the results of
applying the operators, not the methods used to com-
pute the results. In contrast to such logical operators,
we will now define some physical operators by provid-
ing a procedural description of their implementations.
In general, the mapping between logical and physical
operators is not one-to-one. Multiple physical oper-
ators may be combined to implement a single logi-
cal operator and, similarly, a single physical operator
may implement multiple logical operators.

Nested-Loop Join Recall our definition of a pred-
icate join:
R > S=0y(RxS)

By using the definitions of the selection and cross
product operators, we may also define the join inde-
pendently as

RTS:{(T,S)‘TER/\SGS/\TGS}

where we use the notation (r,s) to denote the tuple
obtained by concatenating the attributes of tuple r
with those of s, and where rfs is true if the pred-
icate 6 evaluates to true when applied to r and s.
This definition suggests a simple nested-loop method
for evaluating the join: For each tuple of the left
operand of the join, we examine each tuple of the
right operand and produce the pair as output if it
satisfies the join predicate. This method is summa-
rized by Algorithm 1, where we use the notation r||s
to denote the tuple obtained by appending the at-
tributes of s to those of r.

1Sudarshan S. Chawathe, A Quick Introduction to Rela-

tional Algebra, Class notes. http://cs.umaine.edu/"chaw/
October 2006.

Algorithm 1
1: procedure NLJOIN(R,S,0)

2 for all tuples r € R do

3 for all tuples s € S do
4 if rfs then

5: print r||s
6

7

8
9:

Nested-Loop Join

end if
end for
end for
end procedure

At first glance, the nested-loop join seems quite ef-
ficient, as it considers each pair of R-S tuples exactly
once. Given relations R and S with m and n tuples,
respectively, the join predicate on line 4 is evaluated
mn times. This standard analysis, which is based on
counting the number of CPU operations, is appro-
priate for data that reside in main memory (RAM).
However, in a database environment, the data typi-
cally reside in secondary memory (disks). Since disks
are slower than main memory by several orders of
magnitude, we must revise our analysis by counting
the number of accesses to secondary memory.

Data Access Model In the conventional access
model used for main memory, fetching a data item
(e.g., a byte) by specifying its main-memory address
incurs a fixed cost, regardless of the order in which
items are accessed. For example, reading 100 bytes
that reside in contiguous memory locations costs the
same as reading 100 bytes whose locations are spaced
1000 bytes apart in memory. Figure 1 illustrates
two cases of this kind. (More careful analyses on
modern architectures model the heterogeneous access
costs imposed by caches, but we will not discuss them
here.)

Memory
Addross0

M

Figure 1: Main-memory access of four contiguous
items costs the same as the access of four items spaced
farther apart.

This model is inappropriate for data stored on
disks, which partition data into blocks that form the
unit of access. The number of data items per block
depends on the item sizes relative to the block size
(in bytes). In Figure 2, we depict a simplified exam-
ple with three items per block. In general, accessing x
contiguous items of size y with a block size of B incurs
[xy/B] block operations. If the items are widely sep-
arated, each item resides on a separate block so that
zy block accesses are necessary.

Block
Address

1
2
3

Figure 2: Accessing the four contiguous items on the
left requires two block operations while accessing the
four items on the right requires four.

When a block of data from disk is read into main
memory, it is often fruitful to retain that data for
some time in the hope that future requests for items

in the same block may be fulfilled without incurring
additional disk operations. Most database systems
allocate some space, say C blocks, for this purpose.
As new blocks are read from disk, they are stored in
the buffer. If the buffer is full then space is created
by discarding some block. The method used to deter-
mine the block to discard varies. For the following,
we assume the popular least-recently used (LRU) pol-
icy: The block that is discarded is the one that has
been unused for the longest period of time.

We may use this model to analyze Algorithm 1.
Suppose each tuple of R occupies p bytes and each tu-
ple of S occupies ¢q bytes. Further, suppose the buffer
has space for only two blocks (C' = 2), of which one
is reserved for blocks of R and the other is reserved
for blocks of S. Relation R occupies mp bytes and
thus [mp/B] blocks on disk. Similarly, S occupies
[ng/B] blocks. Each block of R is read once by the
outer loop. For each such block, every block of S is
read by the inner loop. Since there is space to buffer
only one block per relation, each of these block reads
results in a disk access. Thus, this nested-loop join
incurs the cost of [mp/B]- (14 [ng/B]) disk accesses.

Block Nested-Loop Join By modifying Algo-
rithm 1 to iterate over blocks of R and S (instead of
tuples), we obtain the block nested-loop join, which
is summarized in Algorithm 2. The outermost two
loops iterate over the blocks of R and S while the
innermost two loops iterate over all pairs of tuples of
R and S that are in the blocks currently in memory.

Algorithm 2 Block Nested-Loop Join

1: procedure BNLJOIN(R,S,0)

2 for all blocks Br € R do

3 read(BRr)

4: for all blocks Bg € S do

5: read(Bg)

6 for all tuples r € B do
7 for all tuples s € Bg do
8 if r0s then

9: print r||s

10: end if

11: end for

12: end for

13: end for

14: end for

15: end procedure

While the block nested-loop join algorithm is a sig-
nificant improvement over the earlier nested-loop al-

gorithm, there are several other methods for comput-
ing joins, such as the sort-merge join and the hybrid
hash join, that are typically much more efficient. We
refer the reader to Graefe’s survey? for more infor-
mation on these, as well as other topics related to
query processing in databases. We note, however,
that the block nested-loop join remains valuable be-
cause, unlike most other join methods, it makes no
assumptions about the nature of the join predicate 6.

Queries Above, we have sampled some topics in
the definition, use, and implementation of a specific
query language, viz., relational algebra. We now ad-
dress a fundamental question: What constitutes a
query language or, more simply, a query? We present
a brief answer here, referring the interested reader
to a standard text® for much more on the topic:
We define a query to be a mapping from database
instances to database instances that is well-typed,
computable, and generic. The requirement of well-
typedness means, essentially, that the schema of the
result of a query is fixed and cannot, for example, de-
pend on the instance on which the query is evaluated.
The requirement of computability refers to the stan-
dard notion of Turing-computability which states, es-
sentially, that it must be possible to implement the
mapping using a simple, standard model of computa-
tion that is well understood and that is equivalent
to most traditional computers. (A notable excep-
tion, and one that leads to some intriguing results,
is a quantum computer; however, we do not discuss
it further here.) The requirement of genericity is the
most interesting of the three and is discussed below.

Genericity To define genericity, we will use the
idea of permutations of the domain: A permutation of
the domain D is a one-to-one, onto mapping from D
to D. For example, if D is the set of integers, then the
mapping p1(z) = x+1, which maps each integer to its
successor, is a permutation. However, the mapping
p2(x) = |z|, which maps an integer to its absolute
value (unsigned magnitude), is not a permutation be-
cause it is not one-to-one (e.g., p2(—5) = p2(5) = 5).
In addition, ps is not onto because, for instance, there
is no x for which p2(x) = —5. We say a permutation
p is the identity on a set C' C D if p(z) = z for all x
in C.

2Goetz Graefe, “Query evaluation techniques for large
databases,” ACM Computing Surveys 25/2 (June 1993): 73—
170.

3Serge Abiteboul, Richard Hull, and Victor Vianu, Foun-
dations of Databases (Addison-Wesley, 1995).

Intuitively, genericity requires that query results
depend only on those relationships between values
(domain items) that are explicated by relations in the
database, and not on any other relationships resulting
from implementation choices or other non-instance
information. More precisely, consider two schemas,
Sy and S5, and a finite set C' of constants from the
domain D. A mapping g from instances of S1 to in-
stances of Sy is called C-generic iff, for every instance
I of §; and every permutation p that is the identity
on C, q(p(I)) = p(g(I)). We may think of the re-
quirement that queries be generic as a generalization
of the simpler idea of data independence, which states
that results should not depend low-level implementa-
tion details such as, for example, whether integers are
implemented using 32 or 64 bits.

Although genericity is a simple requirement, it has
significant and often surprising consequences. One
such consequence is the non-expressibility of the par-
ity query using the simple relational algebra defined
above: It is not possible to write a simple rela-
tional algebra query that returns a nonempty result
if and only if the number of tuples in a relation is
even. What is even more interesting is that the non-
expressibility of the parity query persists even if we
add additional constructs, such as recursion, which
allow us to express seemingly more complex queries,
such as transitive closure (reachability in a network).
In practical query languages, this problem is typi-
cally fixed by including aggregation functions (sum,
average, etc.) and other constructs.

