
COS 301 Spring 2023 HW011 100 ? pts.; 2 pages. Due 2023-02-23 09:35 a.m.

© 2023 Sudarshan S. Chawathe

You should submit an single electronic package that contains the source files for your work
on the programming questions, by following the submission procedure described in class
and on the class discussion forum. Using the discussion forum to clarify details of both
the main program and the submission format and procedures is an important part of this
homework.

You are welcome to use any inanimate resources (e.g., books, Web sites, publicly avail-
able code) to help you with your work. However, all such help must be clearly noted in your
submissions. Further, no matter what you use, you must be able to explain, in detail, how it
works. (You may be called upon to explain your homework individually.) Refer to the class
policy for details, and ask for clarifications if you are unsure if something is allowed.

Your implementation must use clean, portable Python 3 that minimizes dependencies
on OS, version (beyond 3.x), etc. (If in doubt, please ask.) Packaging and documentation of
code are worth a very significant portion of the grade. This homework centers on extending
the calc.py example, which is included with PLY and has been discussed extensively in
class, as follows.

1. It should support div and mod operators with the usual semantics with operator tokens
// and %, respectively. (This extension has been almost fully provided by classroom
work.)

2. In addition to scalar variables and literals, it should support lists of scalars. The list
constructor uses Python-like syntax. For example, if x has value 1, then (3, 1, 4,)

and (3, 1, 4) (note the missing comma) construct the identical lists, composed of the
three integers 3, 1, 4 in that order. The motivation for the optional terminal comma is
the same as that in Python. In the output, a list should be represented in the second
form (including trailing comma) with exactly one space after each internal comma.
The calculator uses duck typing like Python, so the same variable may store a scalar
and a list at different times.

3. All operators (including those in the earlier extension) and the assignment statement
should be extended to lists. A unary scalar operator is extended to a list by applying
it element-wise to the list’s element. A binary operator is similarly extended to a pair
of list operands by applying it to the corresponding (in order) pairs of the lists. You
may assume that if one operand of an operator is a list, then so is the other. (Catching
and reporting such errors and others is encouraged but not required.)

Input-output: The program should read its input from the standard input stream and
write its output to the standard output stream. Optional diagnostics may be written to the
standard error stream. It is very important that the program read its input only from the
standard in put stream and that it write nothing except the specified output to the standard
output stream. In particular, there should be no prompts or informational messages printed
to standard output.

The input consists of the calculator language of calc.py as discussed in class, extended

1Updated 2023-02-21.

1

to support the above features. The output consists of (only) the values of stand-alone
expressions (excluding expressions that are part of an assignment statement) in the input.
The output for a statement must be produced as soon as the statement appears in the input
stream (before waiting for or reading any further input that may appear). There is exactly
one (i.e. a unique) output for any given input (but there may be multiple inputs resulting in
the same output). If two outputs for the same input differ by even a single character/byte
then at least one of them is incorrect. In the output, lists should have a trailing comma
only when strictly necessary (i.e., for singleton lists). Each comma except the trailing one
(if present/required) should be followed by exactly one space. The following sample input
and output illustrates some of these details.

Sample input:

2 + 3

hello = (2 + 3) * 7

y = 4 * hello + 3

y

y = (2, 3, hello)

y

hello = 2 * y

hello

hello = hello / y

hello

y = (17 % 5) * y + (6, 0, 2)

y

z = (1) + (2)

z

z = (1,) + (2,)

z

emptylist = ()

emptylist + emptylist

x = ((2) + (1984 % (9 // 4)),)

x

x = ((2) + (1984 % (9 // 4)))

x

x = (x+3*x, (17*x + 3) % (50 // 8), 3*x+1)

x + x * (3, 1, 4)

Sample Output: (The symbol denotes a single space and each line is terminated by a
single newline character. There are no blank lines in the output, nor anything else beyond
the following.)
5

143

(2, 3, 35)

(2, 3, 35, 2, 3, 35)

(1.0, 1.0, 1.0)

(8, 3, 37)

3

(3,)

()

(2,)

2

(32, 2, 35)

2

