COS 480/580 Fall 2012 Class Exercise 8 5 questions; 4 pgs. 2012-10-02

(© 2012 Sudarshan S. Chawathe with contributions from Anthony Naddeo.

1. List the members of your group below. Underline your name.

2. Provide expressions for the minimum and maximum cardinalities of the result of each
of the basic operators of the extended bag algebra as a function of the cardinalities of
its operands. Justify your answers.



3. Provide standard SQL (or closest possible) expressions of the best-profit and packet-
grouping queries described in Section 1.1 of the AQuery paper.!

!Alberto Lerner and Dennis Shasha, “AQuery: Query Language for Ordered Data, Optimization Tech-
niques, and Experiments,” in Proceedings of the 29th International Conference on Very Large Data Bases
(VLDB) (Berlin, Germany, 2003).



. Recall the SQL query about TAs from the previous exercises *the names and IDs
of the TAs who are the TAs of the maximum number of students for r credits, for
each distinct value of r occurring in the database). Comment on the correctness of
the following solution by Anthony Naddeo, and suggest improvements or alternative
expressions of the query.

create table students(

id serial primary key,

name text,

year integer );
create table courses(

id serial primary key,

title text,

ta integer references students(id) );
create table enrolls(

student integer references students(id),

courses integer references courses(id),

credits integer );
-- Shows all students that all tas are responsible for
CREATE VIEW ta_students AS

SELECT c.ta, s.id, e.credits

FROM courses c, students s, enrolls e

WHERE s.id = e.student AND e.courses = c.id;
—-- Shows just the total credits that each ta is resonpsible for
CREATE VIEW credits_responsible_for AS

SELECT ta, sum(credits) AS num_credits

FROM ta_students

GROUP BY ta;
—-- Shows just the total students that each ta is responsible for
CREATE VIEW students_responsible_for AS

SELECT ta, count(id) AS num_students

FROM ta_students

GROUP BY ta;
-- Shows both of the top two tables as one
CREATE VIEW all_responsible AS

SELECT ta, num_students, num_credits

FROM students_responsible_for NATURAL JOIN credits_responsible_for;
—-- Shows all distinct total-credit values with the max(cnt(students))
-- for each value
CREATE VIEW distinct_credits AS

SELECT max(num_students) AS num_students, num_credits

FROM all_responsible

GROUP BY num_credits;
-- Shows the ta and max(cnt(sudents)) for each distinct credit sum
CREATE VIEW answer AS

SELECT ta, num_students, num_credits

FROM distinct_credits natural join all_responsible;



5. Provide an algebra equivalent of the query of Question 4.



