
COS 497: Computer Science Capstone 2

Sudarshan S. Chawathe
University of Maine

Spring 2010

This course is the third of a three-course sequence designed to guide students in completing the
Capstone project in either an independent study, group project, or field experience format. The focus is on
the later stages of project work, including completing the programming tasks, evaluating the implemented
systems, documenting all work in a project report, demonstrating the work in action, and making a public
oral presentation.

News and Reminders:

• Please read the class newsgroup for timely announcements: umaine.cs.capstone on NNTP server
news.cs.umaine.edu. Web interface to get started: http://cs.umaine.edu/~chaw/news/.

• The most recent version of this document may be found at http://cs.umaine.edu/~chaw/cap2/.
• Please use the PDF version of this document for printing and reference: cap2.pdf

Goals and Learning Objectives

Goals

• Develop the ability to independently explore a topic by discovering, reading, and critiquing prior work.
• Gain experience in contributing to the body of knowledge.
• Gain experience in conducting and documenting experimental studies of programs.
• Improve our programming skills, with attention to software engineering principles.
• Improve our communication skills, with particular emphasis on written communication and, further,

well-written programs.
• Practice the appropriate and ethical use of existing material of different kinds, such as source code,

services, and documentation.
• Learn how to manage a self-directed project.

Learning Objectives

Students should be able to

• Make effective use of the research literature.
• Determine how available software may be used, subject to both common professional standards and

the legal licenses governing the software.
• Choose an appropriate method for contributing their own work (code, documentation, reports) to the

profession, including licenses and copyrights that best suit their needs.
• Write code that can be easily used by their peers and others.
• Perform scientifically sound experimental evaluations of their work.
• Evaluate appropriate software engineering methods for individual and team work.
• Present their work in a public forum to their peers and others.

1



Prerequisites

The three prerequisites for Capstone 2 are Capstone 1, senior standing, and permission of the department
chair. Permission to register will be granted only to those students who have made enough progress in their
project work to indicate a high likelihood of timely project completion. This assessment will be made by the
department chair, in consultation with the faculty. A key factor is the recommendation from the project
advisor with additional input from the academic advisor.

Students should discuss these prerequisites with their academic advisors before seeking help elsewhere.
Students with any special requests in this regard must address them to the department chair, with the
support of their academic advisors.

Contact Information

Class meetings:

Time: Tuesdays & Thursdays, 2:00–3:15 p.m.
Location: Neville Hall, Room 204 or 120.

Instructor: Sudarshan S. Chawathe

Office: Neville Hall, Room 224.
Office hours: (Please check for changes.) Tuesdays & Thursdays 1:30–2:00 p.m., 3:15–4:00 p.m.
Phone: +1-207-581-3930. Avoid.
Email: chaw@cs.umaine.edu. Use email only for messages unsuitable for the newsgroup. (See below.)

Please put the string Capstone near the beginning of the Subject header of your messages to me.
Web: http://cs.umaine.edu/~chaw/.

Online Resources

Class Web site: http://cs.umaine.edu/~chaw/cap2/

We will use the class Web site for posting assignments, readings, notes, and other material. Please
monitor it.

Class Newsgroup: We will use the local USENET newsgroup umaine.cs.capstone on the NNTP server
news.cs.umaine.edu for electronic discussions. If you are unfamiliar with USENET, you may find the
Web interface at http://cs.umaine.edu/~chaw/news/ useful as a quick way to get started. You may
find further information on USENET at http://en.wikipedia.org/wiki/Usenet. The newsgroup is
the primary forum for electronic announcements and discussions, so please monitor it regularly, and
post messages there as well. Unless there is a reason for not sharing your question or comment, please
use the newsgroup, not email, for questions and comments related to this course.

Class mailing list: Please make sure you are on the class mailing list. A sign-up sheet is circulated at the
first class meeting. If you miss it, please contact me to get on the list. We will use this mailing list
only for urgent messages because all other messages will go on the class newsgroup. I anticipate fewer
than a dozen messages on this list over the semester.

2



Grading Scheme

component %

class participation 5
project reports (versions 1, 2, & 3) 45 (10 + 15 + 20)
source code and demo (versions 1, 2, & 3) 35 (5 + 10 + 20)
final oral presentation 15

Class participation: Students are expected to contribute to learning by asking questions and making
relevant comments in class and on the class newsgroup. Quality is more important than quantity.
Disruptive activity contributes negatively. Please make sure all disruptive devices are disabled while
in class. If you have a good reason for wanting to be disturbed in class, please contact me to make the
appropriate arrangements.

Project Reports: The sequence of three project reports serves to systematically document the project.
Some details are outlined in the guide for Capstone project proposals (Reading 1). Further details will
follow in class. Students are strongly encouraged to continually seek feedback on their working drafts
from their project advisors, Capstone instructor, academic advisors, and others.

Source code and demo: Well packaged and documented source code is an important component of the
Capstone project. The code will be evaluated on not only how well it functions but also on aspects
such as clarity and elegance. The source code does not have to be released under any specific license
(although a free software license1 is strongly recommended); however, no legal encumbrances (such
as nondiscolsure agreements) will be entertained. All code must be submitted electronically (only) as
outlined in the Submission Instructions section below.

Final Oral Presentation: Every student must make an oral presentation of his or her work on a date near
the end of the semester. The date will be selected to ensure good attendance by department faculty
and others, and will be announced in the first few weeks.

Policies

Due dates: All due dates (and times) are strict, as announced in class. If you believe your work was delayed
by truly exceptional circumstances, let me know as soon as those circumstances are known to you and
I will try to make a fair allowance. However, the default is that you get a zero if you don’t turn in the
work on time.

Attendance: Although I expect students to attend all class meetings, I will not be taking attendance. If
you miss a class meeting, you are responsible for making up the lost material. If you have a valid
reason for missing a class, let me know early and I will try to help you make up the class.

Make-up classes: I may have to reschedule a few classes due to my other professional commitments. I
will make every attempt to minimize the number of such occurrences and to reschedule for a time that
works for most students. Further, I will make sure no student is penalized by such occurrences.

Academic honesty (standard university wording): Academic dishonesty includes cheating, plagiarism and
all forms of misrepresentation in academic work, and is unacceptable at The University of Maine. As
stated in the University of Maine’s online undergraduate Student Handbook, plagiarism (the submission
of another’s work without appropriate attribution) and cheating are violations of The University of
Maine Student Conduct Code. An instructor who has probable cause or reason to believe a student
has cheated may act upon such evidence, and should report the case to the supervising faculty member
or the Department Chair for appropriate action.

1such as one compatible with the Debian Free Software Guidelines.

3



Disabilities (standard university wording): If you have a disability for which you may be requesting an
accommodation, please contact Ann Smith, Director of Disabilities Services, 121 East Annex, 581-2319,
as early as possible in the term.

H1N1 notice (standard university wording): In the event of disruption of normal classroom activities due
to an H1N1 swine flu outbreak, the format for this course may be modified to enable completion of
the course. In that event, you will be provided an addendum to this syllabus that will supersede this
version.

Readings

This list will be revised and annotated as the semester progresses to reflect, in particular, the topics and
papers selected based on class discussions.

1. Sudarshan S. Chawathe. Capstone project proposals—suggestions for deeper explorations. Department
of Computer Science, University of Maine. http://cs.umaine.edu/, February 2008.

2. Timothy Furtak, José Nelson Amaral, and Robert Niewiadomski. Using SIMD registers and instructions
to enable instruction-level parallelism in sorting algorithms. In Proceedings of the 19th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 348–357, San Diego, California,
2007.

3. Jon L. Bentley and M. Douglas McIlroy. Engineering a sort function. Software–Practice and Experience,
23(11):1249–1265, November 1993.

4. Derrick Coetzee. An efficient implementation of Blum, Floyd, Pratt, Rivest, and Tarjan’s worst-case
linear selection algorithm. http://moonflare.com/, January 2004.

5. Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K. Govindaraju, Qiong Luo, and Pedro V. Sander.
Relational joins on graphics processors. In Proceedings of the 28th ACM International Conference on
Management of Data (SIGMOD), Vancouver, Canada, June 2008. To appear.

6. Naga K. Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. GPUTeraSort: High perfor-
mance graphics coprocessor sorting for large database management. In Proceedings of the 26th ACM
International Conference on Management of Data (SIGMOD), Chicago, Illinois, July 2006.

7. Daniel Cederman and Philippas Tsigas. A practical quicksort algorithm for graphics processors.
Technical Report 2008-01, Department of Computer Science and Engineering, Chalmers University
of Technology and Göteborg University, Göteborg, Sweden, 2008.

8. Sang-Won Lee and Bongki Moon. Design of flash-based DBMS: an in-page logging approach. In
Proceedings of the 27th ACM International Conference on Management of Data (SIGMOD), pages
55–66, Beijing, China, June 2007.

9. Gilad Bracha. Generics in the Java programming language. Tutorial. http://java.sun.com/, July
2004.

10. Ken Thompson. Reflections on trusting trust. Communications of the ACM, 27(8):761–763, August
1984.

11. Mark C. Hamburg. Two tagless variations on the Deutsch-Schorr-Waite algorithm. Information
Processing Letters, 22:179–183, 1986.

12. Martin E. Hellman. An overview of public-key cryptography. IEEE Communications Magazine,
50(5):42–49, May 2002. Originally published in 16(6), November 1978.

13. Jon Bentley and Don Knuth. Programming pearls: Literate programming. Communications of the
ACM, 29(5):364–369, May 1986.

4



14. Jon Bentley, Don Knuth, and Doug McIlroy. A literate program. Communications of the ACM,
29(6):471–483, June 1986.

15. Paul E. Black. Dictionary of algorithms and data structures. http://www.nist.gov/dads/, September
1998.

Assignments, Tests, and Notes

Material will appear here as we move along the semester. It may be useful to refer to the homeworks and
tests from the previous session: http://cs.umaine.edu/~chaw/200901/cap2/.

Submission Instructions

All electronic submissions must use the file upload interface at http://cs.umaine.edu/~chaw/u/ with
the authentication information announced in class. Uploaded files must be named following the template
cap2-Lastname-Firstname-rep2.jar, or as announced in class. No other forms of electronic submission
(such as email attachments) are accepted. Submissions must be properly packaged, with suitable README
files, and must contain only source code and documentation.

Schedule

An approximate schedule appears in Figure 1. Please use it only as a rough guide to plan your studies. Do
not use it to schedule travel or other events. If you need a definite answer on when something will or will
not occur, you should check with me. The notation Rn refers to the nth item in the reading list.

This schedule will be updated based on the specific topics and readings selected by the class after the first
few class meetings.

5



Tuesday Thursday

January 12th C1

Introduction; project guidelines; customization;
sorting. R1.

14th C2

Customization; sorting and SIMD. R??.

19th C3 21st C4

26th C5 28th C6

Project Report 1 due.

February 2nd C7

Source code version 1 due.

4th C8

9th C9 11th C10

16th C11 18th C12

23rd C13 25th C14

March 2nd

×No class. Spring Break Feb. 27th–Mar. 14th.

4th

×No class.

9th

×No class.

11th

×No class.

16th C15 18th C16

Project Report 2 due.

23rd C17

Source code version 2 due.

25th C18

30th C19 April 1st C20

6th C21 8th C22

13th C23 15th C24

Project Report 3 (final) due.

20th C25

Source code version 3 (final) due.

22nd C26

Final presentations.

27th C27 29th C28

May 4th

×No class. Finals week May 3rd–7th.

6th

×No class. Finals week May 3rd–7th.

Figure 1: Approximate schedule, likely to change. All dates, including exam and presentation dates, are

tentative!

6


