
COS 226 Fall 2008 HW01 200 + 40⋆ pts.; 14 pages. Due 2008-09-16 2:05 p.m.
c© 2008 Sudarshan S. Chawathe with contributions from Mark Royer

Name:

Please note that much of the programming portion of this assignment is devoted to getting
familiar with the class accounts and submission procedure; thus, it is much simpler than the
programming assignments that will follow. You should submit

1. a hard-copy of pages 1–11 of this assignment with your answers filled in, and
2. an electronic package that contains the source files for your work on the programming

questions, by following the submission procedure described on the class Web site.
You are welcome to use any inanimate resources (e.g., books, Web sites, publicly available
code) to help you with your work. However, all such help must be clearly noted in your
submissions. Further, no matter what you use, you must be able to explain, in detail, how

it works. (You may be called upon to explain your homework in person.) Refer to the class
policy for details, and ask for clarifications if you are unsure if something is allowed.

Questions marked with a ⋆ are optional but you are encouraged to answer them for extra
credit.

1. (1 pt.) Write your name in the space provided above.

2. (1 pt.) Read the material on the class Web site. Sign your name here to indicate that
you have understood that material:

3. (1 pt.) Change the passwords on your Gandalf (Unix) and PC cluster accounts. Fill in
the following information. (Change your passwords and note yes in the last column.
Do not write your old or new passwords here.)

Account User Name Password Changed? (yes/no)
Gandalf
PC cluster

4. (1 pt.) Post a message on the class newsgroup.

5. (1 pt.) Package and submit your solutions to the programming questions. After up-
loading your jar file to the FTP server, complete the following:
File name: Size, in bytes:

1



6. (5 pts.) Do there exist non-identical functions f and g such that f is O(g) and g is
O(f)? If so, provide examples of f and g and indicate why they satisfy the required
conditions. If not, explain why such f and g do not exist.

2



7. (20 pts.) Consider the loops L1, L2, and L3 outlined below, where A is an array of one
million elements:

L1: for(int i = 0; i < 1000000000; i++) x = i/2;

L2: for(int i = 0; i < 1000000000; i++) A[i / 1000] = i/2;

L3: for(int i = 0; i < 1000000000; i++) A[i % 1000] = i/2;

(a) Estimate the running times of L1, L2, and L3. The estimates should be in units
of real time, such as milliseconds. Explain in detail how you arrive at these
estimates. Clearly state all assumptions and values of relevant parameters such
as the programming environment, CPU type, speed, and cache structure, and
main-memory bandwidth. [Hint: You may use the class discussion on this topic
as a template.]

3



(b) Implement L1, L2, and L3 in the environment you describe above and measure the
running times experimentally. Describe your experimental setup briefly. Compare
your experimental results to your estimates. Explain any significant differences.

4



8. (30 pts.) Let us represent the empty binary tree by ∅ and a nonempty binary tree with
root n, left subtree l, and right subtree r by the triple (n, l, r). Using this notation, we
may define the following functions on binary trees:

f1(t) =

{

(n, r, l) if t = (n, l, r)
∅ otherwise

f2(t) =

{

(n, f2(r), f2(l)) if t = (n, l, r)
∅ otherwise

f3(t) =

{

(n, f3(r), l) if t = (n, l, r)
∅ otherwise

f4(t) =

{

(n, r, f4(l)) if t = (n, l, r)
∅ otherwise

f5(t) =

{

(n1, (n, l, l1), r1) if t = (n, l, (n1, l1, r1))
∅ otherwise

f6(t) =

{

(n1, l1, (n, r1, r)) if t = (n, (n1, l1, r1), r)
∅ otherwise

f7(t) =

{

(n2, (n1, l1, l2), (n, r2, r)) if t = (n, (n1, l1, (n2, l2, r2)), r)
∅ otherwise

f8(t) =

{

(n2, (n, l, l2), (n1, r2, r1)) if t = (n, l, (n1, (n2, l2, r2), r1))
∅ otherwise

The following function g1 takes a binary tree t and another function f as arguments:

g1(t, f) =

{

f((n, g(l, f), g(r, f))) if t = (n, l, r)
∅ otherwise

a

b c

d e f g

h i j

For the binary tree t1 depicted above, depict the 10 trees f1(t1), . . . , f8(t1), g1(t1, f3),
and f2(f3(t1)) using the usual representation. Label your trees clearly.

5



[additional space for answering the earlier question]

6



[additional space for answering the earlier question]

7



9. (40 pts.) For each of the following, indicate whether the claimed identity is true. The
free variables, such as t and n, are universally quantified. Justify your answers.

(a) f1(f1(t))
?
= t

(b) f2(f2(t))
?
= t

(c) f2((n, l, r))
?
= f1(n, f1(l), f1(r))

(d) f2((n, l, r))
?
= f1(n, f2(l), f2(r))

(e) f2(t)
?
= f3(f4(t))

(f) f3(f4(f3(f4(t))))
?
= t

(g) f2(t)
?
= g1(t, f1)

(h) f5(f6(t))
?
= t

(i) f5(f5(t))
?
= f7(t)

(j) g1((g1(t, f5)), f6)
?
= t

8



[additional space for answering the earlier question]

9



[additional space for answering the earlier question]

10



10. (20 pts.) ⋆ Consider the set S of finite strings composed of the characters a and b,
such as abaab, and aaaaaa. Let · denote the concatenation operator on such strings.
Thus a · ab = aab and abaab · aaaaaa = abaabaaaaaa. Does S contain strings x and y

such that x · a · y = y · b · x? Justify your answer.

11



11. (50 pts.) Interfaces Tree and TreeNode are described below using the tree depicted in
Figure 18.3 in the textbook1 as a running example. Additional examples and definitions
may be found on pages 600–601 of the textbook. A more detailed description appears
in in the files Tree.java and TreeNode.java that are in the Sample Code section of
the class Web site. Implement these interfaces using the first-child/next-sibling method
described in the textbook.2.

Interface Tree:

getRoot returns the root of the tree. For our example tree, it returns the node
containing a.

size returns the number of nodes in the tree, 11 in our example.
height returns the length of the path from the root to the deepest leaf, which is 3 in

our example.
getPreOrder returns a list of elements in preorder: [a, b, f, g, c, d, h, e, i,

j, k ] in our example.
getPostOrder returns a list of elements in postorder: [f, g, b, c, h, d, i, k,

j, e, a] in our example.
makeEmpty removes all nodes from the tree.
isEmpty returns true iff the tree contains no nodes.
height takes a node as input and returns its height in the tree. For nodes b and f of

our example, this method returns 1 and 0, respectively.
depth takes a node as input and returns its depth in the tree. For nodes a and k of

our example, this method returns 0 and 3, respectively.

You should also create a public constructor for the tree that takes a TreeNode that is
to be the root of the tree.

Interface TreeNode:

getElement returns the element contained in the node; a for the root of our example
tree.

setElement sets the element of this node to the non-null element given as argument.
getFirstChild returns the leftmost child of this node.
getChildren returns this node’s children represented as a list.
addChild takes a non-null TreeNode and adds it as the rightmost child of this node.
size returns the number of nodes in this node’s subtree (including this node).
height returns the length of the path from this node to its subtree’s deepest leaf.
getPreOrder is similar to getPreOrder in Tree, but it returns only this node’s sub-

tree in preorder. In our example, invoking this method on node e yields [e, i,

j, k].
getPostOrder returns this node’s subtree in postorder. In our example, invoking this

method on node e yields [i, k, j, e].

1Mark Allen Weiss, Data Structures and Problem Solving Using Java, 3rd edition (Addison-Wesley, 2006),
p.598.

2Idem, p. 597.

12



toString This method is not actually specified in TreeNode, since every Object in
Java has a toString method specified in the class Object. You should redefine
toString in MyTreeNode to display the node’s element.

In addition, you should create a constructor that takes an element and sets it as the
TreeNode’s element.

TestMyTree A simple JUnit3 test TestMyTree has been included as an example.
At a minimum your tree should pass these tests. While it is not required that you
use JUnit testing, it is recommended. It is your responsibility to make sure that each
method of your tree produces the correct results. The test program given here is only
a basic example to test your tree’s implementation.

Submission Files that should be submitted for this question include:

README: a file that describes the files in the submission and how to use them.
MyTree.java: your implementation that extends Tree.java.
MyTreeNode.java: your concrete implementation that extends TreeNode.java.
TestMyTree.java: your test program that illustrates the correct working of your im-

plementation.
Tree.java: the Tree interface specification.
TreeNode.java the TreeNode interface specification.
Makefile: a configuration file that ensures that running the standard make command

results in the complete build of your implementation.

Important: Check very carefully that your submission contains only source files, not
object files such as .class files. You will lose many points if this requirement is not
met! As a general guide, a source file is something you or someone else generated by
typing; these are the only files that should be part of your submission. If in doubt, ask
for clarifications.

12. (40 pts.) Implement the functions f1, . . . , f8 of Question 8. That is, define an interface
F1To8 that includes methods corresponding to these functions, and implement that
interface. Include both the file defining your interface and the files used by your im-
plementation with the rest of your submission. Be sure to describe them appropriately
in the README file.

13. (10 pts.) Implement the function g1 of Question 8. That is, add a method corre-
sponding to this function to the F1To8 interface above, implement it, and include the
necessary files in your submission. [Hint: Functors.4]

3http://www.junit.org/
4Weiss, op. cit., Section 4.8, p. 137.

13



14. (20 pts.) ⋆ Write a program that reads a positive integer n from standard input and
writes to standard output a representation of of all distinct trees on the set {1, 2, . . . , n}
of vertices. Package and submit your implementation as in earlier questions, including
the appropriate instructions in the README file.

For the output, use the following linear textual representation L(t) of a tree t:

• If t = ∅ (the empty tree), then L(t) = {}.
• If t has root n and children C = {c1, c2, . . . , ck}, let d1, d2, . . . , dk be the listing of

the children C in sorted order. Then

L(t) = (n, {L(d1), L(d2), . . ., L(dk)})

where, by slight abuse of notation, L(di) denotes the linear textual representation
of the subtree rooted at child di. (There is a single space after each comma in the
representation.)

The output should contain the representation of one tree on each line and should be
sorted by lexicographic order on the linear representations viewed as strings. The
output should contain nothing else (such as spurious newline characters, prompts, or
informative messages). Sample inputs and outputs for n = 1 . . . 3 appear below.

Input: 1
Output:
(1, {})

Input: 2
Output:
(1, {(2, {})})

(2, {(1, {})})

Input: 3
Output:
(1, {(2, {(3, {})})})

(1, {(3, {(2, {})})})

(2, {(1, {(3, {})})})

(2, {(3, {(1, {})})})

(3, {(1, {(2, {})})})

(3, {(2, {(1, {})})})

(1, {(2, {}), (3, {})})

(2, {(1, {}), (3, {})})

(3, {(1, {}), (2, {})})

14


